

Rationally designed lattice structure for human cancellous bone vertebral implants

A. Sorrentino, D. Castagnetti

RESEARCH OBJECTIVE

The work investigates a novel titanium lattice structure for human cancellous bone vertebral implants by exploiting the unusual properties of auxetic metamaterials. Specifically, we rationally design and experimentally validate an innovative 3D-printed cellular structure that consists of a bio-inspired auxetic rotating geometry with the aim to develop a porous biomaterial with similar mechanical properties

REPRESENTATIVE UNIT CELL

Periodic boundary conditions (**PBC**)

Ti6Al4V ($\sigma_{yield} = 1013$ MPa)

Global strain (ε_{y}) = 3%

Χ

M2 Concept Laser machine® (SLM)

	E [*] [MPa]	ε _y [%]	Porosity [%]
Target	> 75	> 2	> 70
FEA	102	3.5	76
Exper.	128	3.4	74

Department of Engineering Sciences and Methods (UNIMORE) Via G. Amendola 2, 42122, Reggio Emilia, Italy